
Introduction

• Understand “Scope” of an Identifier

• Know the Storage Classes of
variables and functions

18-2

1. Problem Definition

 Write a function “swap” that has two integer input
arguments. This function should swap the values of the
variables.

2. Refine, Generalize, Decompose the problem definition

 (i.e., identify sub-problems, I/O, etc.)

 Input = two integers

 Output= no value is returned to the calling function, but
the values of the called variables should be swapped.

3. Develop Algorithm

 temp = a;
a = b;
b = temp;

/* C Function to swap values. */

#include <stdio.h>

void swap(int, int); /* prototype for swap */

void main(void) /* function header */

{

 int x = 1;

 int y = 2;

 swap(x,y);

 printf("x = %i , y = %i \n",x,y); /* prints x = 1 , y = 2 */

}

void swap(int a , int b)

{

 int temp = a;

 a = b;

 b = temp;

 return;

}

x

1000

Main Memory before call

1

The swap function will successfully swap the values of the
variables a and b.

But, since non-arrays are passed by value the swap of the values
for a and b will not have any affect on the variables x and y.

It is important to note that even if we had used the variable
names x and y rather than a and b the swap function would still
not work. See the next slide...

y 2

Main Memory while executing swap,

but before the return statement

x

1000
1

y 2

a

2

b 1

3000

Why swap doesn’t work.

/* Modified function to swap values. */

#include <stdio.h>

void swap(int, int);

void main(void)

{

 int x = 1;

 int y = 2;

 swap(x,y);

 printf("x = %i , y = %i \n",x,y); /* prints x = 1 , y = 2 */

}

void swap(int x , int y) /* we now use x and y */

{

 int temp = x;

 x = y;

 y = temp;

 return;

}

x

1000

Main Memory before call

1

The C compiler will keep track of the variables x and y declared
in main and the variables x and y declared in swap. The x in
main is a different variable than the x in swap. Similarly for the
y variable.

The reason that the x variable in main is different than the x
variable in swap is that two declarations of x occur in different
blocks. That is the scope of the x in main is different than the
scope of x in swap.

One solution to the problem is to use pointer variables. We will
discuss pointer variables in a future lecture.

y 2

Main Memory while executing swap,

but before the return statement

x

1000
1

y 2

x

2

y 1

3000

Why the modified swap doesn’t work.

18-7

An identifier is a name that is composed of a sequence of letters,

digits, and the ‘_’ underscore character.

Variable names are identifiers and so are function names and

symbolic constant names.

The scope of an identifier is the portion of the program in which

the identifier is visible or accessible.

Both variables and functions have two attributes: type and

storage class. The scope of a variable or function is related to its

storage class.

18-8

•Local Variables - are declared within a block and cannot be referenced

by outside the block; i.e., each function is assigned its own "local"

storage areas.

•Global Variables - declared outside any block and are known to all

blocks in the same file . By default, global variables are "static”

storage class.

In the examples on the following slides, drawing a picture of memory is

helpful in understanding how scoping works.

18-9

int globalVar = 1; /* global variable */

int myFunction(int); /* function prototypes */

void main(void) /* local variable: result, in main */

{

 int result;

 result = myFunction(globalVar); /* call myFunction */

 printf("%i",result); /* prints “2” */

 printf("%i",globalVar); /* prints “2” */

 printf("%i",x); /* compile error! x not known in main */

}

int myFunction(int x) /* Local variable x */

{

 ++x;

 printf("%i",x); /* prints value “2” */

 printf("%i",globalVar); /*prints value“1” */

 ++globalVar;

 return x;

}

18-10

globalVar

1000

Main Memory before call to Myfunction

1

result

???

Main Memory while executing MyFunction, but before ++globalVar;

1000
1

x 2
3000

???

globalVar

result

18-11

globalVar

1000

Main Memory after call to Myfunction

2

result

2

Main Memory while executing MyFunction, but before return(x);

1000
2

???

x 2
3000

globalVar

result

18-12

int globalVar = 1; /* global variable */

int myFunction(int); /* function prototypes */

void main(void)

{

 int result;

 result = myFunction(globalVar); /* call myFunction */

 printf("%i",result); /* prints “2” */

}

int myFunction(int x) /* Local variables: x, globalVar */

{

 int globalVar; /* new “local” variable */

 printf("%i\n",globalVar);/* prints ??? */

 return x + 1;

}

18-13

int myFunction(int); /* function prototypes */

void main(void) /* local variables: x,result in main */

{

 int result, x = 2;

 result = myFunction(x); /* call myFunction */

 printf("%i",result); /* prints “3” */

 printf("%i",x); /* prints “2” WHY??? */

}

int myFunction(int x) /* Local variable: x */

{

 x = x + 1;

 printf("%i\n",x); /* prints “3” */

 return x;

}

#include <stdio.h>

int x; /* x is a global variable */

int y; /* y is a global variable */

void swap(int, int); /* prototype for swap */

void main(void)

{

 x = 1; /* x and y are not declared here!!! */

 y = 2;

 swap(x,y);

 printf("x = %i , y = %i \n",x,y); /* prints x = 1,y = 2 */

}

void swap(int x , int y)

{

 int temp = x;

 x = y;

 y = temp;

 return;

}

18-15

A function can be called by any other function, provided that

either the function definition or its prototype is in the same

file as the calling function and precedes the function call.

If no prototype is specified for a function, its header serves as

the function prototype.

Note: Functions cannot be defined within each other

18-16

- Determines the storage duration and scope of identifiers,

and also linkage between files.

auto - creates storage for variables when the block that

declares them is entered, and deletes the storage when the

block is exited. Local variables have "auto" storage by

default.

e.g.,typing auto float a, b, c; is equivalent to typing float a, b, c;

18-17

static - creates and initializes storage for variables when the program

begins execution. Storage continues to exist until execution terminates. If

an initial value is not explicitly stated, a static variable is initialized to 0. We

can retain values of local variables by declaring them to be static.

In the following example, the static variable sum is initialized to 1.

 static int sum = 1;

The initialization takes place only once. If the above declaration appears in

a user defined function , the first time the function is called, the variable

sum is initialized to 1. The next time the function (containing the above

declaration) is executed sum is not reset to 1.

18-18

extern - used to reference identifiers in another file. Function names

are extern by default.

 e.g., extern int foreignVar;

18-19

1. Problem Definition

 Write a function “sum”that keeps a running total of the
sum of every value passed to “sum”. To test this
function, modify the previous program of Lecture 15 -3
that compute the average of values in a file.

2. Refine, Generalize, Decompose the problem definition

 (i.e., identify sub-problems, I/O, etc.)

 Input = integers from file “input.dat”

 Output=real number representing the arithmetic
average (sum of values)/(count of number of values)

3. Develop Algorithm

 (processing steps to solve problem)

18-20

Flowchart for main

 while EOF != scanf value

total = sum(value);

++count;

True False

count = 0;

printf total/(double) count

#include <stdio.h>

int sum(int); /* function protoype */

void main(void)

{

 int value,total,count = 0;

 while (EOF != scanf("%i", &value)) /* read value */

 {

 total = sum(value);

 ++count;

 } /* end of while loop */

 printf("Average of the %i numbers = %f \n",count,total/(double)count);

}

int sum(int val) /* function header */

{

 static int total_val = 0; /* static variable, */

 total_val += val;

 return total_val;

}

